Search results

Search for "finite element simulations" in Full Text gives 12 result(s) in Beilstein Journal of Nanotechnology.

Determination of elastic moduli of elastic–plastic microspherical materials using nanoindentation simulation without mechanical polishing

  • Hongzhou Li and
  • Jialian Chen

Beilstein J. Nanotechnol. 2021, 12, 213–221, doi:10.3762/bjnano.12.17

Graphical Abstract
  • behavior of microspherical materials and to reduce the number of experimental tests, finite element simulations are used to calculate the load–displacement curves of nanoindentation during loading and unloading. The unloading curve is used to determine the elastic modulus of a material via the well-known
  • Figure 2, Figure 3a, and Figure 3c. Then, the Oliver–Pharr modulus EOP can be obtained according to Equation 8. The value of contact depth hC extracted from finite element simulations is equal to the theoretical value obtained from the Equation 10 as follows: The values of EOP/E in Figure 4a correspond
PDF
Album
Full Research Paper
Published 19 Feb 2021

Numerical analysis of vibration modes of a qPlus sensor with a long tip

  • Kebei Chen,
  • Zhenghui Liu,
  • Yuchen Xie,
  • Chunyu Zhang,
  • Gengzhao Xu,
  • Wentao Song and
  • Ke Xu

Beilstein J. Nanotechnol. 2021, 12, 82–92, doi:10.3762/bjnano.12.7

Graphical Abstract
  • Sciences (CAS), Suzhou 215123, China CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics, Suzhou 215123, China 10.3762/bjnano.12.7 Abstract We study the oscillatory behavior of qPlus sensors with a long tilted tip by means of finite element simulations
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2021

Seebeck coefficient of silicon nanowire forests doped by thermal diffusion

  • Shaimaa Elyamny,
  • Elisabetta Dimaggio and
  • Giovanni Pennelli

Beilstein J. Nanotechnol. 2020, 11, 1707–1713, doi:10.3762/bjnano.11.153

Graphical Abstract
  • measured on macroscopic samples (several square millimeters of surface). Therefore, their value is averaged over a large number of nanowires with different diameters. For the simulations of the doping diffusion process, we considered the average diameter. Figure 4 shows finite-element simulations of doping
PDF
Album
Full Research Paper
Published 11 Nov 2020

Transition from freestanding SnO2 nanowires to laterally aligned nanowires with a simulation-based experimental design

  • Jasmin-Clara Bürger,
  • Sebastian Gutsch and
  • Margit Zacharias

Beilstein J. Nanotechnol. 2020, 11, 843–853, doi:10.3762/bjnano.11.69

Graphical Abstract
  • experiments in order to switch freestanding nanowire growth to a laterally aligned growth mode. By means of finite element simulations, we determined that a higher volumetric flow and a reduced process pressure will result in a preferred laterally aligned nanowire growth. Furthermore, increasing the
PDF
Album
Full Research Paper
Published 28 May 2020

Subsurface imaging of flexible circuits via contact resonance atomic force microscopy

  • Wenting Wang,
  • Chengfu Ma,
  • Yuhang Chen,
  • Lei Zheng,
  • Huarong Liu and
  • Jiaru Chu

Beilstein J. Nanotechnol. 2019, 10, 1636–1647, doi:10.3762/bjnano.10.159

Graphical Abstract
  • sample properties was systematically investigated by combining experimental results with theoretical analysis from finite element simulations. The results show that imaging with a softer cantilever and a lower eigenmode will improve the subsurface contrast. The experimental results and theoretical
PDF
Album
Full Research Paper
Published 07 Aug 2019

Review of time-resolved non-contact electrostatic force microscopy techniques with applications to ionic transport measurements

  • Aaron Mascaro,
  • Yoichi Miyahara,
  • Tyler Enright,
  • Omur E. Dagdeviren and
  • Peter Grütter

Beilstein J. Nanotechnol. 2019, 10, 617–633, doi:10.3762/bjnano.10.62

Graphical Abstract
  • frequency shift peak’ (tFP) by Giridharagopal and co-workers [22]. The authors demonstrated that simulated results (both numerical simulations of a damped-driven harmonic oscillator and finite element simulations) and their experimental results show excellent agreement given the same parameters and subject
PDF
Album
Supp Info
Review
Published 01 Mar 2019

Evidence of friction reduction in laterally graded materials

  • Roberto Guarino,
  • Gianluca Costagliola,
  • Federico Bosia and
  • Nicola Maria Pugno

Beilstein J. Nanotechnol. 2018, 9, 2443–2456, doi:10.3762/bjnano.9.229

Graphical Abstract
  • . Using finite-element simulations and a two-dimensional spring-block model, we investigate how graded material properties affect the macroscopic frictional behaviour, in particular, static friction values and the transition from static to dynamic friction. The results suggest that the graded material
  • compared to those derived by explicit finite-element simulations. This provides useful insights to understand the frictional properties of graded materials, with the aim of designing smart tribo-materials and innovative solutions for sliding interfaces. Methods Introduction In this work, we investigate the
PDF
Album
Supp Info
Full Research Paper
Published 13 Sep 2018

Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale

  • Arindam Dasgupta,
  • Mickaël Buret,
  • Nicolas Cazier,
  • Marie-Maxime Mennemanteuil,
  • Reinaldo Chacon,
  • Kamal Hammani,
  • Jean-Claude Weeber,
  • Juan Arocas,
  • Laurent Markey,
  • Gérard Colas des Francs,
  • Alexander Uskov,
  • Igor Smetanin and
  • Alexandre Bouhelier

Beilstein J. Nanotechnol. 2018, 9, 1964–1976, doi:10.3762/bjnano.9.187

Graphical Abstract
  • source is likely to be higher. We also estimated the propagation length of the slot mode using finite-element simulations. A cross-sectional view of the norm of the electric field is shown in the inset of Figure 7 for a mode existing at 800 nm. The field is mostly located in the slot and the calculated
PDF
Album
Full Research Paper
Published 11 Jul 2018

The self-similarity theory of high pressure torsion

  • Yan Beygelzimer,
  • Roman Kulagin,
  • Laszlo S. Toth and
  • Yulia Ivanisenko

Beilstein J. Nanotechnol. 2016, 7, 1267–1277, doi:10.3762/bjnano.7.117

Graphical Abstract
  • leads to significant errors in the description of phase transformations. A correct approach to take into account the slippage in finite element simulations has been developed in [4][5]. A simple analytical model taking into account the slippage has been offered in [6]. It leads to an equation similar to
PDF
Album
Full Research Paper
Published 07 Sep 2016

Thermo-voltage measurements of atomic contacts at low temperature

  • Ayelet Ofarim,
  • Bastian Kopp,
  • Thomas Möller,
  • León Martin,
  • Johannes Boneberg,
  • Paul Leiderer and
  • Elke Scheer

Beilstein J. Nanotechnol. 2016, 7, 767–775, doi:10.3762/bjnano.7.68

Graphical Abstract
  • measurement of the resistance change due to laser heating of sensor leads on both sides next to the junction. Our results for the measured thermopower are in agreement with recent reports in the literature. Keywords: atomic contacts; finite element simulations; laser heating; low temperature; mechanically
  • position of the heating allows in principle to investigate geometry-dependent effects. Another novel ingredient for thermopower measurements is the combination of finite element simulations and the usage of the temperature dependence of the resistive leads for estimating the temperature gradient. This
PDF
Album
Full Research Paper
Published 30 May 2016

Formation of pure Cu nanocrystals upon post-growth annealing of Cu–C material obtained from focused electron beam induced deposition: comparison of different methods

  • Aleksandra Szkudlarek,
  • Alfredo Rodrigues Vaz,
  • Yucheng Zhang,
  • Andrzej Rudkowski,
  • Czesław Kapusta,
  • Rolf Erni,
  • Stanislav Moshkalev and
  • Ivo Utke

Beilstein J. Nanotechnol. 2015, 6, 1508–1517, doi:10.3762/bjnano.6.156

Graphical Abstract
  • theoretically. Numerical finite element simulations with the annealing conditions (peak laser power of 13.6 W, pulse duration of 10 μs and frequency of 10 kHz) gave a stationary substrate surface temperature at the center of the laser beam of 158 °C which was reached after approximately 30 s. This was in good
PDF
Album
Supp Info
Correction
Full Research Paper
Published 13 Jul 2015

The optimal shape of elastomer mushroom-like fibers for high and robust adhesion

  • Burak Aksak,
  • Korhan Sahin and
  • Metin Sitti

Beilstein J. Nanotechnol. 2014, 5, 630–638, doi:10.3762/bjnano.5.74

Graphical Abstract
  • . Description of the cohesive zone model and numerical simulations are included in sections “Cohesive zone model” and “Numerical simulations”, respectively. After that, the results of the finite element simulations are presented, and in the subsequent section the detachment behavior of individual fibers, the
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2014
Other Beilstein-Institut Open Science Activities